Pointer Range: 0 to &FFFFFF (1 MHz Bus only’

Default Option: Fixed Pointer to &FE6D (on BBC micro)
Format 76543210
Starting Option .

(only important if transformation
and write only options are specified)

IER

Access lo: User 6522 Interupt Enable Register
Pointer Range: 0 to &FFFFFF (1 MHz Bus only)
Default Option: Fixed Pointer to &FE6E (on BBC micro)
Format 76543210
Starting Option (only important if transformation
and write only options are specified)

CU-DACSB

Access to: Control Universal's 8-bit Analogue Card

Fointer Range: &00xx00, where 00<xx<&FF

Notes: On input PTRE has range U to 15 and defines input channe!
On output PTRE is ignored as there is only one channel
Data is passed in both directions as single byte quantities
using BPUTE and BGETE

CU-DAC12

Access to: Control Universal's 12-bit Analogue Card

Pointer Range: &00xx00, where 00<xx<&FF

MNotes: On input PTRE has range O to 7 and defines input channel

On output PTRE has range 07to 3 and defines output channel

Data is passed in both directions as integer variables
Data should be PRINTE-ed for output and INPUTE£-ec for input

The Control ROM
for the BBC Micro

Users Manual
Fifth Draft
Second [mpression

15th February 1984

© Philip, Spence-Jones & Associates Ltd.
and Cambridge Control Systems

Control Universal Ltd

Control Universal Ltd (Distributed by

Manufacturers and Distributors of
Microcomputer Systems and Components

Unit 2 Andersons Court, Newnham Road,
Cambridge CB3 9EZ.

Tel. Cambridge (0223) 358757

Telex 3ervice 9958531 GLOTX-G Quote C-13 N

Manufacturers and Distributors of
Microcomputer Systems and Components

——— __..4‘

Unit 2 Andersons Court, Newnham Road,
Cambridge CB3 9EZ

Telephone Cambndage (0223) 358757

The Control ROM

Introduction

What is the Control ROM? Why is it useful?

At the lowest level, computers deal with voltage levels at individual points. Inside
the the BBC computer, these voltage levels are mostly 0 or 3-5 volts. In the early
days of digital electronics, engineers were concerned intimately with the details of
these- voltage levels. As computers have developed, it has become possible to take a
broader and broader view cf what is going on, until the present day when languages
like BASIC allow us to define the behavior of the whole machine with just a few
words. ;

On the other hand, when it comes to connecting the computer to the outside world, it
is still nescesary to understand the detailed operation of the circuitry involved.
BASIC allows access to the "lower levels" of the machine, but it still requires a
great deal of care if the program is to work as expected, and it is very difficult to
write "legal" programs which will work equally well on second processors or new
Acorn computers.

The CONTROL ROM changes all this. Because it allows you to treat interface data
as a filing system just like the cassette, disc or network interfaces, data can be
manipulated easily using high level commands, You can read and write data to your
interfaces as easily as you can save it or load it from tape or disc. Special "files"
are available to do all the things that you could normally want to do: for example
reading data from an input port, writing data to a particular bit without changing the
other output data, using the complicated modes of the User 6522 and so on.

By simplifying the programming rquirements of 1/0O, the Control ROM allows you to
write more readable programs. This means that programs can be written faster and
are less prene to bugs.

cB2
Access to:

Pointer Range:
Default Option:

Note:

CAZ
Access to:

Pointer Range:
Default Option:

Note:

CcAl
Access to:

Pointer Range:
Default Option:

Note:

IFR

Access to:

User 6522 Peripheral Control Register (Register 12)
- CB2 Control

0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE&C (on BBC micrao)

Format 210-----
Starting Option .

- (only important if transformation
and write only options are specified)

Write 0 for CB2 input - negative active edge

Write 1 for CB2 independant interrupt interrupt

- Negative active edge

Write 2 for CB2 irput - positive active edge

Write 3 for CB2 independant interrupt interrupt

- positive active edge

Write 4 for CB2 Handshake Qutput

Write 5 for C82 Pulse Output

Write 6 for CH2 Low Output

Write 7 for CB2 High Output

User 6522 Peripheral Control Register (Register 12) |
- CA2 Control
0 to &FFFFFF (1 MHz Bus only)
Fixed Pointer to &FE6C (on BBC micro)
Format ----210-
Starting Option (only important if transformation

and write cnly options are specified) I
Write 0 for CA2 input - negative active edge
Write 1 for CA2 independant interrupt interrupt |
- Negative active edge [
Write 2 for CA2 input - positive active edge
Write 3 for CA2 independant interrupt interrupt
- positive active edge
Write 4 for CA2 Handshake Output
Write 5 for CA2 Puise Output
Write 6 for CAZ Low Output
Write 7 for CA2 High Qutput

User 6522 Peripheral Control Register (Register 12)
- CAl Caontrol
0 to &FFFFFF (1 MHz Bus only)
Fixed Pointer to &FESC (on BBC micro)
Format ------.(Q
Starting Option {only important if transformation
and write only options are specified)
Write 0 for Negative Edge Interupts
Write 1 for Positive Edge Interupts

User 6522 Interupt Flag Register

19

CA2

Access to:

Pointer Range:
Default Option:

Note:

CAl
Access to:
Pointer Range:

Default Option:

Note:

IFR

Access to:
Pointer Range:
Default Option:

IER

Access to:
Pointer Range:
Default Option:

write 1 for CB32 independant interrupt interrupt
- negative active edge

Write 2 for CB2 input - positive active edge
Write 3 for CB2 independant interrupt interrupt
- positive active edge

Write 4 for CB2 Handshake Output

write 5 for CB2 Pulse Output

Write 6 for CBZ Low Output

Write 7 for CB2 High Output

User 6522 Peripheral Control Register (Register 12)

- CA2 Control (CA2 is on Printer Port Pin 1, but is a
buffered output)

0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE6C (on BBC micra)

Format ----210-

Write 0 for CA2 input - negative active edge
Write 1 for CA2 independant interrupt interrupt
- negative active edge

Write 2 for CA2 input - positive active edge
Write 3 for CAZ independant interrupt interrupt
- positive active edge

Write 4 for CA2 Handshake Output

Write 5 for CA2 Pulse Output

Write 6 for CA2 Low Output

Write 7 for CAZ High Output

User 6522 Peripheral Control Register (Register 12)
- CAl Control (CB1 is on Printer Port Pin 19)

0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FEEC (on BBC micro)

Format ------- 0

Write 0 for Negative Edge Interupts
Write 1 for Positive Edge Interupts

User 6522 Interupt Flag Register

0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FEED (on BBC micro)
Farmat 76543210

User 6522 Interupt Enable Register

0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE6E (on BBC micro)
Format 76543210

Getting Started

To access the facilities of the Control ROM, type *10.

Now try accessing memory. To do this you use a channel called "MEM", which
accesses the normal memory space of the BBC machine. The easieset way to show
what is happening is to use the screen memory. To start with, select MODE 7.
Select the Control ROM by typing *I0. Now you can open a channel: type
Screen%=0OPENOUT "MEM"

This has set Screen% to the value of the handle you must use to refer to this
channel. Now type

PTR/ Screen%=&7E00

This defines where in memory you want to talk to, in this case a location near the
middle of the MODE 7 screen. Type

BPUT# Screen%,ASC"A"
An "A" will appear on the screen.
Now try:

PTR# Screen%= &7E0L
BPUT# Screen%,ASC"B"

A letter "B" should appear next to the "A". By setting PTR#Screen% appropriately,
you can send bytes anywhere in the memory. Type

BPUT# Screen%,ASC"C"

and the "B" should change into a "C". Note that the pointer does not change unless
you tell it to.

\

Channels Other Than MEM

So far, you have only looked at "MEM", the channel which allows access to the main
memory of the BBC machine. There are three other types of channel which can be
used with the Control ROM:

1. "BUS" which accesses the One-Megahertz Bus.

2. "USERPORT", "BITO" to "BITB" and other channels which access the BBC
machine's User 6522

3. Special Channels, which each have syntax and action appropriate to their function.

"BUS" is a general purpose channel, which functions identically to "MEM", except
that the memory accessed is on the One-Megahertz Expansion Bus. Up to 16
megabytes of address space is supported (a 24-bit address), which is a superset of the
Acorn Standard 16-bit address and the Control Universal Standard 20-bit address. In
all other ways, the syntax and use of "BUS" is the same as for "MEM",

"USERPORT" and "BITO" to "BITB" are special channels which deserves a section of
their own. The other channels which access the user 6522 are standard "MEM"
channels, with special default settings to facilitate access to the various registers and
control functions of the 6522. They are detailed in the technical details section.

The two special channels included in the present issue of the ROM are "CU-DACB"
and "CU-DACI12". These channels allow data to be read from and written to the
Control Universal 8-bit and 12-bit analogue cards (see page 19 for details).

"USERPORT", "BITO" to "BIT8"

Nine special channels are available for talking directly to the user port of the BBC
Micro. These are "USERPORT", which accesses the whole byte, and "BIT0" to
"BIT7", which access the individual bits. All these channels automatically adjust the
data direction register to define the corresponding bits as inputs or outputs when thy
are read to or written from. "“BIT8" is a channel which treats CB2 (pin 4 of the
User Port) as an output, and it can be considered to be an output bit just like Bits O
to 7. Of course it cannot be used as an input, because of the 6522 design.

The PTR# for these channels cannot be changed, although it can be defined when the
channel is opened. If the Pointer is re-defined, the special "User Port" features will
not occour. "BITO" will access Bit0 of the specified location, "BIT1" will access
Bitl and so on. All the bit manipulation functions work in the same way as for
._gmz:.

Example:

In a mains control application, a SJ Research R2 Mains Controller is plugged into
Bits 0 and 1 of the user port. The devices are a heater and a lamp. You coiuld
then open files

Heater%=0PENOQUT"BITO"
Light%=0PENOQUT"BIT1"

and then turn the devices on by statements like
BPUT# Light%,1 : REM This will turn on the light, BPUT# Light%,0 turns it off.
Note that this is much more transparent than statements like

2&FE62=&FF
7&FE60=4&02 : REM This turn on the light (Bit 1)

Note:

T2-MODE
Access to:

Pointer Range:
Default Option:

Note:

SR-MODE
Access to:

Pointer Range:
Default Option:

Note:

CBl1
Access to:

Pointer Range:
Default Option:

Note:

cB2

Access to:
Pointer Range:

Default Option:

Note:

write 0 for Timed Interrupt each time Tl is loaded,

PB7 (Pin 20) outpul disabled,

Write 1 for Timer 1 continual interupts, PB7 output disabled,
Write 2 for Timed Interrupt each time Tl is loaded,

PB7 one-shot output enabled

Write 3 for Timer 1 continual interupts,

PB7 square wave output enabled,

User 6522 Auxillary Control Register (Register 11)
- Timer 2 Control

0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE6B (on BBC micro)

Default mode is Timed Interrupts,
Wwrite 0 for Timer 2 Count Down with pulses on PBé (Pin 18)

User 6522 Auxillary Control Register (Register 11)
- Shift Register Control

0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE6B (on BBC micro)

Format ---210--

Write 0 for SR disabled

Write 1 for Shift in Under Control of Timer 2

Write 2 for Shift in Under Control of System Clock

Wwrite 3 for Shift in Under Control of External Clock

Write 4 for Free Running (recirculating) Output at T2 rate
Write 5 for Shift out Under Control of Timer 2

Write 6 for Shift out Under Control of System Clock

Write 7 for Shift out Under Control of External Clock

User 6522 Peripheral Control Register (Register 12)
- CBI1 Control (CBl is on User Port Pin 2)

0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE6C (on BBC micro)

Format ---0----

Write 0 for negative active edge
Write 1 for positive active edge

User 6522 Peripheral Control Register (Register 12)
- CB2 Control (CB2 is on User Port Pin 4)

0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE6C (on BBC micro)

Format 210-----

Write 0 for CB2 input - negative active edge

17

TIC-H
Access to:

Pointer Range:
Default Option:

TiL-L
Access to:

Pointer Range:
Default Option:

TIL-H
Access to:

Pointer Range:
Default Option:

T2C-L
Access to:

Pointer Range:
Default Option:

T2C-H
Access to:

Pointer Range:
Default Option:

SR
Access to:

Pointer Range:
Default Option:

T1-MODE
Access Lto:

Pointer Range:
Default Option:

User 6522 Timer 1 Counter, High Byte
0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE&5 (on BBC micro)
Format 76543210

User 6522 Timer 1 Latch, Low Byte

0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE&6 (on BBC micra)
Format 76543210

User 6522 Timer 1 Latch, High Byte

0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE&7 (on BBC micro)
Format 76543210

User 6522 Timer 2 Counter, Low Byte
0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE68 (on BBC micro)
Format 76543210

User 6522 Timer 2 Counter, High Byte
0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE&9 (on BBC micro)
Format 76543210

User 6522 Shift Register (Register 10)
0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE6A (on BBC micro)
Format 76543210

User 6522 Auxillary Control Register (Register 11)

- Timer 1 Control

0 to &FFFFFF (1 MHz Bus only)

Fixed Pointer to &FE6B (on BBC micro)
Format 10------

16

The Control ROM statements are also "legal" -- i.e. they will run on a second
processor and with all programming languages.

Closing Files

The Control ROM handles a maximum of 32 channels open at one time. They are
normally allocated the handles 128 to 159 inclusive. However, limitations on the
amount of workspace available may prevent you opening all thirty-two channels at
once. Use CLOSE# Name% to close channels that are no longer in use.

CLOSE#0

CLOSE#O0 is a shorthand way of closing all open channels. It is good practice to
include a "CLOSE#0" in the initialisation routine of all your programs (remember to
select *10 first). It is also good practice to CLOSE# individual channels as soon as
you have finished with them, as this minimises the chances of running out of space or
handles.

Presetting the Pointer

In many instances it would be useful to be able to set the pointer when you open the
channel. This usually makes your program easier to read. The Contraol ROM allows
you to include an initial value for PTR# in the qualifiers of the Channel description.
The pointer can be specified in decimal or hexadecimal format, just like BASIC. Hex
numbers should be preceeded with an "&" in the usual way. Try typing

Screen%=0PENIN "mem /32000"
PRINT PTR# Screen%

The computer should print 32000.

Bits of Bytes

So far we have only been dealing with bytes as a whole, eight bits at a time. It is
when you come to manipulating particular Bits or combinations of Bits within a Byte
that the power of the Control ROM realy begins to show.

First, we should agree terminology. Inside the BBC machine data is stored in BYTES.
Each Byte consists of eight BITS, each of which can have the value 0 or 1. The bits
are numbered from 0 to 7 with bit 7 as the MOST SIGNIFICANT. The value stored
in the byte is 1 x Bit0 + (2 x Bitl) + (4 x Bit2) + (B x Bit3) + (16 x Bita) + (32 x
Bit5) + (64 x Bit6) + (128 x Bit7). We shall always represent bytes with the MOST
SIGNIFICANT BIT on the LEFT. This is the standard convention for micros, but
anyone with experience of mainframes beware, it is occasionally taken the other way
round on large computers.

For convenience, let us call the data on the "inside" of the machine PROGRAM DATA
and data on the 1/O side PORT DATA.

I/O ports often have one line connected to each bit of the byte at a particular
location. The data may either be TRUE (that is "1" maps to a high voltage, "0"
maps to a low voltage) or INVERTED (that is ' maps to a low voltage, "0" maps
to a high voltage). For the purpose of this discussion we shall assume that the 1/0
port data is True.

How the Control ROM manipulates data

Mapping the Program Data on to the Port Data

The Control ROM can be used to modify the data read or written according to a
specification given when a channel is opened. The simplest action would be to write
a byte of data exactly as it appears to the program, and a channel like "MEM"
assumes this unless you specify otherwise.

More complicated changes (or mappings) are described by listing the sources of the
value for each Port Data Bit, in order, most significant bit first. For example, the
source can be one of the data bits in the Program Data Byte. This is indicated by a
number between 0 and 7, which is the number of the Bit in the Program Byte. This
means that the default setting for "MEM" is

16543210

in other words, bit 7 of the port data comes from bit 7 of the program data; bit 6
of the port comes from bit é of the program and so on.

As another example, supposing you wanted to set a whole byte either to all zeros or
all ones. You could of course BPUT# either 0 or 255, but it might be more
convenient to use 0 and 1 as the values to BPUT. The B-bit binary representation of
0 is 00000000, and that of 1 is 0ODOODDl, so we want to copy bit 0 (the least
significant) on to all the other bits. To do this, we could define a channel:

Together%=0OPENIN "MEM 00000000"

Leaving Bits Unchanged

A more common requirement would be to leave some of the port data unchanged, for
example so that you can switch on the lights without turning off the heater. To do
this we need to introduce another symbol, to mean "do not change this bit". This
symbaol is the minus sign:"-". MNow we can open different channels to change
different bits in the same byte. For example:

Heater% = OPENOUT "USERPORT ------- o"
Lights% = OPENOUT "USERPORT ------ 0-"

Now we can turn on the heater without affecting the lights, simply by

BPUT# Heater%,l

and then we can turn off the lights:

BPUT# Lights%,0

Notice that we chose Bit0 of the program data to be the important one for baoth
channels, so that l=zon and O=off in both cases. If you want to make your programs

more readable, you can define two variables:

On =1
Off=0

Now we can turn off the heater:
BPUT# Heater%,0ff

and turn on the lights

intBIT7=0PENQUT "BIT7/&FE40 M"

will gain access to the BBC Micro's internal 6522, Bit 7. (We would not recommend
trying this, as you will almost certainly crash the machine !)

PB

Access Lo: User 6522 Data Port B

Pointer Range: 0 to &FFFFFF (1 MHz Bus only)

Default Option: Fixed Pointer to &FE60 (on BBC micro)
Format 76543210

Note: This channel addresses the same Data Register as "USERPORT", but it does
not affect the DDR.

PA

Access to: User 6522 Data Port A

Pointer Range: 0 to &FFFFFF (1 MHz Bus only)

Default Option: Fixed Pointer to &FE61 (on BBC micro)
Format 76543210

LATCHU

Access to: User 6522 Data Port A (register 15)
Register 15 has same data as register 1, but without the
handshake capabilities)
Pointer Range: 0 to &FFFFFF (1 MHz Bus only)
Default Option: Fixed Pointer to &FE6F (on BBC micrao)
Format 76543210

DDRB

Access to: User 6522 Data Direction Register B

Pointer Range: 0 to &FFFFFF (1 MHz Bus only)

Default Option: Fixed Pointer to &FE62 (on BBC micro)
Format 76543210

DDRA

Access to: User 6522 Data Direction Register A

Pointer Range: 0 to &FFFFFF (1 MHz Bus only)

Default Option: Fixed Pointer to &FE63 (on BBC micro)
Format 76543210

TiC-L
Access to: User 6522 Timer 1 Counter, Low Byte
Pointer Range: 0 to &FFFFFF (1 MHz Bus only)

Default Option: Fixed Pointer to &FE64 (on BBC micro)
Format 76543210

15

BIT4

Functions Identically to "BITO", but refers to Bit 4 (Pin 14) of the User Port:

Default Option: Fixed Pointer to &FE&0
Format ---0----

BITS

Functions I[dentically to "BITO", but refers to Bit 5 (Pin 16) of the User Port:

Default Option: Fixed Pointer to &FE6&0
Format --0-----

BITé
Functions Identically to "BITO0", but refers to Bit 6 (Pin 18) of the User Port:

Default Option: Fixed Pointer to &FE6&0
Format -0<-----

BIT7
Functions ldentically to "BITO", but refers to Bit 7 (Pin 18) of the User Port:

Default Option: Fixed Pointer to &FE60
Format 0-------

BIT8

Functions simillarly to "BITO" to "BIT7", but refers to Bit CB2 (Pin 4) of the User
Port.

This allows access to CB2 as a simple bit. See under "CB2" below for control of
other functions of this bit.

Default Option: Fixed Pointer to &FE6C
Format “"0----- (reads from or writes to bit CB2 of User Port)

Access to User 6522 Reqgisters

The following channels are set up to allow easy access to all the registers of the
User 6522. If a pointer value is specified, the system assumes that the 6522 is on
the 1 MHz Bus, base address at the pointer value. The appropriate register offset is
added to the base address given. If access is required to a 6522 in the BBC Micro's
memory map, the letter "M" should be added to the pointer value. For example:

14

BPUT# Lights%,0n

Note that this is equivalent to the example given on page 4, but using a more general
specification. Normally the channels "BIT0" etc would be simpler, but in the case
where several bit must change together, the general form could be more useful.

Setting bits high or low.

Another thing we might want to do is to set particular bits in the Port data
permenantly high or low. This can be done by including either "." for low or "*" for
high. (The choice of symbols is intended to be a graphical representation of the
state of the bits). As an example, consider the Interrupt Enable Register of a 6522.
The state of the flags can only be changed by writing a "1" into the corresponding
bit position, in which case the flag will assume the value of bit 7 of the programmed
byte. Any flag to which a "0" is written will remain unchanged. Whilst this is fairly
difficult to program in machine code, using the Control ROM makes it extremely
simple. Suppose we want a channel to set and clear the flag for Timer 2, which is
in bit 5. Lets set up a channel like this:

T2IntEnable = OPENIN "mem /&FE6E 0.%....."

The action of this is to write x0100000 into the Interrupt Enable Register (IER),
where x is determined from bit O of the program data. Now we can set up our two
variables:

Enable=1
Disable=0

and we can turn the interrupts on and off at will:

BPUT# T2IntEnable, Enable

BPUT# T2IntEnable, Disable

The Action on Reading

We have described what happens when a port with a special mapping is written to,
but what happens when it is read back? As nearly as possible the action of the
mapping is reversed.

This means that the bits of the incomming data byte are arranged in the bit positions
specified in the mapping descriptor. Any Program Bits not defined by this rule will

be set to zero.

For example, if the port specification was:

"MEM -------0"

then if Bit0 of the port was high, the value returned from reading the channel would

be 1, and if Bit0 was low, the value returned would be 0. All the other bits in the
port are ignored. If the port specification was:

then the values returned would be 128 or 0 for Bit0 high or low respectively.

A problem arises when the reverse operation is not exactly defined. This occours
when one of the numbers 0 to 7 is included more than once in the port specification,

for example:
"MEM 00--""." or "BUS 3210--77"

In general it is better to avoid this problem by defining a separate specification for
reading and writing, as described in the next section. In practice, the value returned
for each bit will be that of the most significant bit in the port with the
corresponding number. Some examples may make this clear:

"MEM ------00" will return 1 if the input port data is xxxxxxlx
and 0 if the input port data is xxxxxxOx

Different actions on Read and Write

The TZIntEnable above example illustrates an interesting problem. The specification
works well for writing to the lER, but it falls down on reading back. The IER
always reads back with a "1" in bit 7, which is where we are reading from at the
moment. The information we would like to get back (the current state of the T2
interupt enable flag) is contained in bit 5 of the port data.

The Control ROM allows you to define different mappings for reading and writing, to
cope with this sort of problem. Read-only mappings should be prefaced by an "R"
(or "r") and Write-only mappings should start with a "W" {or "w"). If only one half
is specified, the other half will adopt the default mapping.

In the Interupt Enable Register example, what we really need is:
T2IntEnable=OPENIN "MEM /&FEGE w0."...... r--0-----"

Although this looks involved, you only need to write it once, in the initialisation
routine, and you can include a REM to remind you what it means. Remember that
the equivalent BASIC statements would be:

10 DEFPROCWriteT2IntFlag(State%)
20 T2ler=&FE6E: REM IFR location
30 ?T2ler=&80*(State% AND 1) + &20
40 ENDPROC

50

60 DEFFNReadT2IntFlag

70 =(?T2ler AND &20) DIV &20

Using the Control ROM is almost twice as fast, and it will also works with second
processors.

Write-only Locations: the "Latch" option.

With some peripherals it is undesirable or not possible to read from them between
writes. Examples are read-sensitive registers like interrupt flag registers, or the
paging latch on the 1 MHz. Bus. In these cases, if you wish to change some bits
without affecting others, you must keep a record of what is there. The Control ROM
has a facility called the "Latch" option which will do this for you. This option is
selected by including an "L" (or "I") in the channel specification. The RAM copy
will be re-initiallised whenever PTR is changed. The Control ROM checks to see if
any other channels can read or write to the same location, and takes their value for
the location if they are, otherwise the value will be set to zero .

Since the control ROM is forbidden to read Latch locations befare writing to them, it
has no idea what is originally in the location. Until you write to the location, it will
assume that its initial value is &00. If you wish to specify a given starting value

changed to make sure that bits 6 and 0 were outputs. This would turn bit 0 from

an input to an output. Bit 6 is now also an output, but bit 7 is still an input and
bits 1 to 5 remain unaffected.

Reading the channel again would again turn bit 0 into an input. Bit 7 has
remained an input since the last read.

It can be seen that we have used the user port with one output, one input and
one bi-directional bit.

Note 3: The User Port pin numbers are given overleaf with the specifications for the
individual bit channels. Note that User Port pins 5 to 19 are connected to ground,
but that pins 1 and 3 are connected to +5 volts (max current available 100 mA)

BITO

Access to: Userport Pin é (Changes automatically to 1-MHz Bus if other
address specified)

Pointer Range: 0 to &FFFFFF (in 1 MHz Bus only!)

Default Option: Fixed Pointer to &FE60
Format ------- 0

Note 1: If a port address is explicitly specified, it defaults to the 1-MHz Bus, but it
can be converted to Main memory space by adding an "M" to the channel
specification.

Note 2: This channel deals with the User 6522 Data Direction Register in the same
way as "USERPORT"

Note 3: The User Port pin numbers are given with the specifications for the individual

bit channels. Note that User Port pins 5 to 19 are connected to ground, but that
pins 1 and 3 are connected to +5 volts (max current available 100 mA)

BIT1
Functions Identically to "BITO", but refers to Bit 1 (Pin B) of the User Port:
Default Option: Fixed Pointer to &FE60
Format ------0-
BIT2
Functions Identically to "BITO0", but refers to Bit 2 (Pin 10) of the User Port:

Default Option: Fixed Pointer to &FE60
Format -----0--

BIT3
Functions Identically to "BIT0", but refers to Bit 3 (Pin 12) of the User Port:

Default Option: Fixed Pointer to &FE60
Format ----0---

13

Technical Details

MEM

Access to: Main memory

Pointer Range: 0 to &FFFF

Default Option: Pointer undefined
Format 76543210

BUS

Access to: One Megahertz Bus Extended Memory Space
Pointer Range: 0 to &FFFFFF
Default Option: Pointer undefined

Format 76543210

Note: All One Megahertz Bus channels can be converted to Main memory space by
adding an "M" to the channel specification.

USERPORT

Access to: Userport (Changes automatically to 1-MHz Bus
if other address specified)

Pointer Range: Not applicable

Default Option: Fixed Pointer to the User Port of the computer
Format 76543210

Note 1: If the address of a 6522 register is explicitly specified, the 10 System
assumes it is on the 1-MHz Bus. It can be specified as being in the machine's main
memory space by adding an "M" to the channel specification.

Note 2: This channel specification is a special function which automatically takes care
of the Data Direction Register. The algorithm used is as follows.

All bits will remain programmed to their initial direction until the port is written
to or read from. Remember that "BREAK" sets all bits to inputs.

Any bit which is written to will be reprogrammed as an output. It will remain an
output until it is next read from. (Under some circumstances the Control ROM
will read the port immediately prior to writing back modified data. This will not
affect he DDR). Only a "READ DATA" request can increase the number of inputs
in the Port. Simmilarly, only a "WRITE DATA" request can increase the number
of Outputs in the Port.

Note that bits defined as "don't change" (ie "-" in the transformation) will not
have their direction altered.

An example may help to make this clear.

Supposing a channel is set up as follows:
USERPORT RO------ 1 W-0----- 1

Reading this would set bits 0 and 7 to inputs, and return a value (bit7)+2*(bit0).
Other bits would remain unchanged in direction.

Writing to this channel would set bit 6 to the value of bit 0 of the byte written,
and bit 0 to the value of bit 1 of the value written. The DDR would then be

12

you can open a channel to write to that location, and then write the required
initialisation value.

Auto Incrementing

Some applications require the pointer to increment by one byte every time a read or
write operation is done. This can be done auto matically by specifying I (or "i") in
the specification. For example

Screen%=OPENOUT "MEM /&7C00 I"

will cause the value of PTR# Screen% to increase by one after each read or write
operation on this channel.

Note that the pointer in incremented after the read or write. You are still allowed
to change the value of the pointer yourself.

Toggle

There is one more feature included within the mapping specification options, Toggle.
A "T" (or "t") in any bit position means that the corresponding bit in the Port Data
will be toggled every time the channel is written to. Toggling means that a "1" is
turned into a "0" and a "0" is turned into a "1".

[The next version will have an "X" option. An "X" option is specified in the same
way as a "W" or "R" option, that is as a string of eight characters, preceeded by an
"X". As with the other options, the options may include ".", ".",6 """ wgn Q" o
"7". The byte so assembled will be Exclusive-Or-ed with the output data. "." or
"-" will leave the data unchanged, "*" or "t" will toggle it and "0" to "7" will
conditionally toggle it depending on the state of the specified bit. To further
increase the flexibility, the data will be written back twice, once before and once
after the XOR has been done. This will allow a strobe to be generated at the same
time as the data is written, for example.]

Memory requirements

The Control ROM requires three pages of private workspace and one page of public
workspace. If the Control ROM is the only sideways ROM fitted, it will therefore
require four pages of workspace. In this case PAGE will be set to &1200. If *NOIO
is executed, the next CTRL-BREAK will change PAGE to &E00. If other sideways
ROMs are fitted, the Control ROM will probably only require an extra three pages,
as the public workspace is shared between all the ROMs fitted and its size is
determined by the largest of the individual public workspace requirements.

Note that any program will be lost when *NOIO is executed, or CTRL, | and BREAK
are held down together.

ROMs Fitted Default PAGE with Default PAGE with
(in addition to Control ROM on Control ROM off
Control ROM)

No other ROMs 41200 &0E00

Disc &1C00 &1900
Ecaonet &1500 &1200

Disc & Net &1E00 &1B00
Teletext &2500 &2200
Teletext & Disc &2700 &2400
Teletext & Econet &2700 &2400
Teletext, Disc & Net &2900 &2600

10

Star Commands

*10

Selects the Control ROM as the currently selected filing system. If *NOIO has been
executed, the message "Press CTRL-I-BREAK to select [O" will appear. In this
circumstance, a CTRL-BREAK is the usual way to re-enable the Control ROM,
However, if no CTRL-BREAK has been executed since the *NOIO command (which
means that the workspace has not been released) then any BREAK will enable the
Control ROM.

(Note that you cannot use *l. as an abbreviation for *INFO when the Control ROM is
fitted, as this will be interpreted as *10)

*NOIO

This command will turn off the Control ROM after the next CTRL-BREAK, releasing
the workspace RAM. Although it has no immediate effect on ,the memory
requirements, it cannot be reversed by *IO until the next break. [f *NOIO has been
executed but no CTRL-BREAK has occoured, *I0 will allow the Control ROM to be
turned on after the next break, even if this is not a CTRL-BREAK. This provides a
less inconvenient method of re-enabling the Control ROM (without upsetting the
function keys ete) if *NOIOQ is executed accidentally.

*CAT or *

(not yet implimented: returns "Control ROM active" if *10 selected.)

*TERMINALBBC

Turns the BBC computer into a dumb terminal, using the RS-423 channel to
communicate with the host. Control codes will be interpreted in the same way as in
the BBC's normal VDU channel. Once *TERMINALBBC has been executed, the only
way to escape is to press CTRL-BREAK: note that the Control ROM must not be
plugged into the right-hand most socket on the BBC Micro, otherwise the terminal
program will be re-entered.. Note RS-423 Baud Rates and any special function keys
must be set up befare entering the terminal mode.

*ROMFILL <number> <size(Kbytes)>

This is a utility which takes data from &3000 to (&3000 + 1024%*<size> - 1) and puts
it into a RAM in sideways ROM slot <number>. The ROM sockets in the BBC Micro
are numbered (from the left) 12, 13, 14, 15. Data is loaded from the main RAM and
then checked back to make sure that it has been correctly loaded.

(Greenwich Instruments manufacture EPROM Emulators -- compact RAM modules with
an internal battery to make them non-volatile -- suitable for this purpose. The
required Write signal is available at IC77, pin 8. Greenwich Instruments Ltd, The
Crescent, Main Road, Sidcup, Kent. Tel 01-302 4931).

*SAVE, *LOAD, LOAD and SAVE, *INFO

All these commands return the message "Control ROM active", to remind you that you
forgot to select the program filing system.

